
Damaris: Addressing Performance Variability in Data
Management for Post-Petascale Simulations

Matthieu Doriera,∗, Gabriel Antoniub, Franck Cappelloc, Marc Snirc,d,
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Abstract

With exascale computing on the horizon, reducing performance variability in
data management tasks (storage, visualization, analysis, etc.) is becoming a key
challenge in sustaining high performance. This variability significantly impacts
the overall application performance at scale and its predictability over time.

In this paper, we present Damaris, a system that leverages dedicated cores
in multicore nodes to offload data management tasks, including I/O, data com-
pression, scheduling of data movements, in situ analysis and visualization. We
evaluate Damaris with the CM1 atmospheric simulation and the Nek5000 com-
putational fluid dynamic simulation on four platforms, including NICS’s Kraken
and NCSA’s Blue Waters. Our results show in particular that (1) Damaris fully
hides the I/O variability as well as all I/O-related costs, which makes simulation
performance predictable; (2) it increases the sustained write throughput by a
factor of up to 15 compared with standard I/O approaches; (3) it allows almost
perfect scalability of the simulation up to over 9,000 cores, as opposed to state-
of-the-art approaches that fail to scale; (4) it enables a seamless connection to
the VisIt visualization software to perform in situ analysis and visualization in a
way that does not impact the performance of the simulation, nor its variability.

In addition, we further extended our implementation of Damaris to also
support the use of dedicated nodes and conducted a thorough comparison of the
two approaches –dedicated cores and dedicated nodes– for I/O tasks with the
aforementioned applications.
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1. Introduction

As supercomputers become larger and more complex, one critical challenge
is to efficiently handle the immense amounts of data generated by extreme-
scale simulations. The traditional approach to data management consists of
writing data to a parallel file system, using a high-level I/O library on top of a
standardized interface such as MPI-I/O. This data is then read back for analysis
and visualization purpose.

One major issue posed by this traditional approach to data management is
that it induces a high performance variability. This variability can be observed
at different levels. Within a single application, I/O contention across processes
leads to large variations in the time each process takes to complete its I/O
operations (I/O jitter). Such differences from a process to another in a massively
parallel application makes all processes wait for the slowest one. These processes
thus waste valuable computation time. The variability is even larger from one
I/O phase to another, due to interference with other applications sharing the
same parallel file system.

While scientists have found a potential solution to this problem by coupling
their simulations with visualization software in order to bypass data storage
and derive results early on, the current practices of coupling simulations with
visualization tools also expose simulations to high performance variability, as
their run time does not depend anymore on their own scalability only, but
also on the scalability of visualization algorithms. This particular problem is
further amplified in the context of interactive in situ visualization, where the
user himself and his interactions with the simulation become the cause of run-
time variability.

To make an efficient use of future exascale machines, it becomes important
to provide data management solutions that do not solely focus on pure perfor-
mance, but address performance variability as well. Addressing this variability
is indeed the key to ensure that each and every component of these future plat-
forms is optimally used.

To address these challenges, we have proposed a new system for I/O and
data management called Damaris. Damaris leverages dedicated I/O cores on
each multicore SMP (Symmetric multiprocessing) node, along with the use of
shared memory, to efficiently perform asynchronous data processing I/O and in
situ visualization. We picked this approach based on the intuition that the usage
of dedicated cores for I/O-related tasks combined with the usage of intranode
shared memory can help overlapping I/O with computation, but also lowering
the pressure on the storage system by reducing the number of files to be stored
and, at the same time, the amount of data. Such dedicated resources can
indeed perform data aggregation, filtering or compression, all in an asynchronous
manner. Moreover, such dedicated cores can further be leveraged to enable non-
intrusive in situ data visualization with optimized resource usage. Some of these
aspects of the Damaris approach have been introduced in previous conference
papers [1, 2]. This paper aims to provide a comprehensive, global presentation
and discussion of the Damaris approach in its current state and of its evaluation
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and applications.
We evaluated Damaris on three different platforms including the Kraken

Cray XT5 supercomputer [3], with the CM1 atmospheric model [4] and the
Nek5000 [5] computational fluid dynamics code. By overlapping I/O with com-
putation and by gathering data into large files while avoiding synchronization
between cores, our solution brings several benefits: (1) it fully hides the jit-
ter as well as all I/O-related costs, which makes the simulations performance
predictable; (2) it substantially increases the sustained write throughput (by a
factor of 15 in CM1, 4.6 in Nek5000) compared with standard approaches; (3) it
allows almost perfect scalability of the simulation (up to over 9,000 cores with
CM1 on Kraken), as opposed to state-of-the-art approaches which fail to scale;
(4) it enables data compression without any additional overhead, leading to a
major reduction of storage requirements.

Furthermore, we extended Damaris with Damaris/Viz, an in situ visual-
ization framework based on the Damaris approach. By leveraging dedicated
cores, external high-level structure descriptions and a simple API, our frame-
work provides adaptable in situ visualization to existing simulations at a low
instrumentation cost. Results obtained with the Nek5000 and CM1 simulations
show that our framework can completely hide the performance impact of visu-
alization tasks and the resulting run-time variability. In addition, the proposed
API allows efficient memory usage through a shared-memory-based, zero-copy
communication model.

Finally, in order to compare the Damaris, dedicated-core-based approach
with other approaches such as dedicated nodes, forwarding nodes, and staging
areas, we further extended Damaris to support the use of dedicated nodes as
well. We leverage again the CM1 and Nek5000 simulations on Grid’5000, the
national French grid testbed, to shed light on the conditions under which a
dedicated-core-based approach to I/O is more suitable than a dedicated-node-
based one, and vice versa.

To the best of our knowledge, Damaris is the first open-source middleware to
enable the use of dedicated cores or/and dedicated nodes for data management
tasks ranging from storage I/O to complex in situ visualization scenarios.

The rest of this paper is organized as follows: Section 2 presents the back-
ground and motivation for our work, discusses the limitations of current ap-
proaches to I/O and to in situ visualization. Our Damaris approach, including
its design principles, implementation detail and use cases, is described in Sec-
tion 3. We evaluate Damaris in Section 4, first in scenarios related to storage
I/O, then in scenarios related to in situ visualization. Our experimental eval-
uation continues in Section 5 with a comparison between dedicated cores and
dedicated nodes in various situations. Section 6 discusses our positioning with
respect to related work and Section 7 summarizes our conclusions and discusses
open further directions.
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2. Background and Motivation

HPC simulations create large amounts of data that are then read offline by
analysis tools. In the following we present the traditional approaches to parallel
I/O as well as the problems they pose in terms of performance variability. We
then dive into the trend toward coupling simulations with analysis and visual-
ization tools, going from offline to in situ analysis and visualization.

2.1. I/O and Storage for Large-Scale HPC Simulations
Two I/O approaches are commonly have been traditionally used for per-

forming I/O in large-scale simulations.

The File-per-process approach consists of having each process access its own
file. This reduces possible interference between the I/O of different pro-
cesses, but increases the number of metadata operations. This is especially
a problem for file systems with a single metadata server, such as Lustre [6].
It is also hard to manage the large number of files thus created and have
them read by analysis or visualization codes that use a different number
of processes

Collective I/O leverages communication phases between processes to aggre-
gate access requests and reorganize them. These operations are typically
used when several processes need to access different parts of a shared
file, and benefit from tight interactions between the file system and the
MPI-I/O layer in order to optimize the application’s access pattern [7].

2.1.1. Variability in Traditional I/O Approaches

The periodic nature of scientific simulations, which alternate between com-
putation and I/O phases, leads to burst of I/O activity. The overlap between
computation and I/O is reduced, so that both the compute nodes and the I/O
subsystem may be idle for periods of time.

With larger machines, the higher degree of I/O concurrency between pro-
cesses of a single application or between concurrent applications pushes the I/O
system to its limits. This leads to a substantial variability in I/O performance.
Reducing or hiding this variability is critical, as it is an effective way to make
a more efficient use of these new computing platforms through improved pre-
dictability of the behavior and of the execution time of applications.

Figure 1 illustrates this variability with the IOR application [8], a typical
benchmark used to evaluate the performance of parallel file systems with pre-
defined I/O patterns. It shows that even with very well optimized I/O (each
process here writes the same amount of data contiguously in a separate file
using large requests that match the file system’s distribution policy) there is a
large difference in the time taken by each process to complete its I/O operations
within a single I/O phase and also across I/O phases. Since during these I/O
phases all processes have to wait for the slowest one before resuming computa-
tion, this I/O variability leads to a waste of performance and to unpredictable
overall run times. I/O variability is therefore a key issue that we aim to address
in this paper.
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Figure 1: Variability across processes and across I/O phases in the IOR benchmark using a
file-per-process approach on Grid’5000’s Rennes site [9], with a PVFS2 [10] file system. Each
graph represents a write phase. The 576 processes are sorted by write time on the y axis
and an horizontal line is draw with a length proportional to this write time. These graphs
are normalized so that the longest write time spawns the entire graph. Each graph is colored
according to a scale that gives the aggregate throughput of the phase, that is, the total amount
of data written divided by the write time of the slowest process.2

2.1.2. Causes and Effects of the I/O Variability

Skinner at al. [11] point out four causes of performance variability in super-
computers (here presented in a different order).

1. Communication, causing synchronization between processes that run within
the same node or on separate nodes. In particular, network access con-
tention causes collective algorithms to suffer from variability in point-to-
point communications.

2. Kernel process scheduling, together with the jitter introduced by the op-
erating system.

3. Resource contention within multicore nodes, caused by several cores ac-
cessing shared caches, main memory and network devices.

4. Cross-application contention, which constitutes a random variability com-
ing from simultaneous accesses to shared components of the computing
platform, such as the network or the storage system, by distinct applica-
tions.

Future systems will have additional sources of variability, such as power man-
agement, and fault masking activities. Issues 1 and 2, respectively, cause com-
munication and computation jitter. Issue 1 can be addressed through more
efficient network hardware and collective communication algorithms. The use
of lightweight kernels with less support for process scheduling can alleviate issue
2. Issues 3 and 4, on the other hand, cause I/O performance variability.

At the level of a node, the increasing number of cores per node in recent
machines makes it difficult for all cores to access the network all at once with
an optimal throughput. Requests are serialized in network devices, leading to

2Due to the use of colors, this figure may not be properly interpretable if this document
was printed in black and white. Please refer to an electronic version.
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a different service time for each core. This problem is further amplified by the
fact that an I/O phase consists of many requests that are thus serialized in an
unpredictable manner.

Parallel file systems also represent a well-known bottleneck and a source
of high variability [12]. The time taken by a process to write some data can
vary by several orders of magnitude from one process to another and from
one I/O phase to another depending on many factors, including (1) network
contention when several nodes send requests to the same I/O server [13], (2)
access contention at the level of the file system’s metadata server(s) when many
files are created simultaneously [14], (3) unpredictable parallelization of I/O
requests across I/O servers due to different I/O patterns [15], (4) additional
disk-head movements due to the interleaving of requests coming from different
processes or applications [16]. Other source of I/O variability at disk level
include the overheads of RAID group reconstruction, data scrubbing overheads,
or various firmware activities.

Lofstead et al. [15] present I/O variability in terms of interference, with the
distinction between internal interference caused by access contention between
processes of the same application, and external interference that are due to
sharing the access to the file system with other applications, possibly running on
different clusters. While the sources of I/O performance variability are numerous
and difficult to track, we can indeed observe that some of them originate from
contentions within a single application, while other come from the contention
between multiple applications concurrently running on the same platform. The
following section describes how to tackle these two sources of contention.

2.1.3. Approaches to Mitigate the I/O Variability

While most efforts today address performance and scalability issues for spe-
cific types of workloads and software or hardware components, few efforts target
the causes of performance variability. We highlight two practical ways of hiding
or mitigating the I/O variability.

Asynchronous I/O. The main solution to prevent an application from being
impacted by its I/O consists of using asynchronous I/O operations, i.e., non-
blocking operations that proceed in the background of the computation.

The MPI 2 standard proposes rudimentary asynchronous I/O functions that
aim to overlap computation with I/O. Yet these functions are available only for
independent I/O operations. Besides, popular implementations of the MPI-I/O
standard such as ROMIO [17] actually implement most of these functions as
synchronous. Only the small set of functions that handle contiguous accesses
have been made asynchronous, provided that the backend file system supports
it.

Released in 2012, the MPI 3 standard completes this interface with asyn-
chronous collective I/O primitives. Again, their actual implementation is mostly
synchronous. As of today, there is no way to leverage completely asynchronous
I/O using only MPI-I/O. Higher-level libraries such as HDF5 [18, 19] or NetCDF
[20] have also no support yet for asynchronous I/O.
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Dedicated I/O Resources. Over the past few years, dedicated I/O resources
have been proposed to address the limitation of MPI implementations in terms
of asynchronous I/O. These resources can take various forms. Explicit I/O
threads [21] have been used to achieve fully asynchronous I/O at the potential
price of additional OS jitter. Dedicated cores have been proposed to leverage a
subset of cores in each multicore node used by the application [1, 22], and have
them perform I/O operations on behalf of the cores that run the application.
Staging areas [23, 24, 25] is another approach that usually consists of dedicated
nodes deployed along with an application. Forwarding nodes [26, 27] and burst
buffers [28, 29] consist of a set of nodes, independent of the applications and
interposed between the compute nodes and the storage system. These nodes
may feature a larger memory capacity than compute nodes, in the form of SSDs
or NVRAMs.

This trend toward using dedicated resources has benefited the field of data
analysis and visualization as well, where dedicated cores or nodes are seen as
new ways to efficiently get access to simulations’ data as they are generated.
The next section explores this trend in more details.

2.2. Analysis and Visualization: an Overlooked Process

Data produced by HPC simulations can serve several purposes. One of
them is fault tolerance using a checkpoint/restart method. The other, and
most important, is the analysis and visualization of the simulated phenomenon.
Analysis and visualization are important components of the process that leads
from running a simulation to actually discovering knowledge.

Given the increasing computation power in recent machines and the trend
toward using dedicated resources, it will become more and more common to
couple the simulation with the analysis and visualization tools. Simulation/Vi-
sualization coupling consists of making the simulation send its data directly
to a visualization software instead of storing it and processing it offline. This
approach, termed in situ visualization and illustrated in Figure 2 (b), has the
advantage of bypassing the storage system and producing results faster. It also
allows scientists to control their simulations as they run, efficiently overlapping
simulation and knowledge discovery.

2.2.1. A Taxonomy of In Situ Visualization Methods

Several in situ visualization strategies exist that we separate into two main
categories –tightly coupled and loosely coupled– depending on where visualiza-
tion tasks run.

Tightly-Coupled In Situ Visualization. In a tightly-coupled scenario, the anal-
ysis and visualization codes run on the same node as the simulation and share
its resources. The main advantage of this scenario is the proximity to the data,
which can be retrieved directly from the memory of the simulation. Its draw-
back lies in the impact that such analysis and visualization tasks can have on
the performance of the simulation and on the variability of its run time. Within
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(a) Traditional Scientific Workflow (b) Coupling Simulation/Visualization

Figure 2: Two approaches to retrieve insight from large-scale simulations: (a) the traditional
approach of storing data in a parallel file system and reading it offline, (b) the new trend
towards simulation/visualization coupling.

this category, we make a distinction between time partitioning and space parti-
tioning.

Time-partitioning visualization consists of periodically stopping the simula-
tion to perform visualization tasks. This is the most commonly used method.
For example, it is implemented in VisIt’s libsim library [30] and ParaView’s
Catalyst library [31, 32].

In a space-partitioning mode, dedicated cores perform visualization in par-
allel with the simulation. This mode poses challenges in efficiently sharing data
between the cores running the simulation and the cores running the visualiza-
tion tasks, as these tasks progress in parallel. It also reduces the number of
cores available to the simulation.

Loosely-Coupled In Situ Visualization. In a loosely coupled scenario, analysis
and visualization codes run on a separate set of resources, that is, a separate set
of nodes located either in the same supercomputer as the simulation [33, 34], or
in a remote cluster [35]. The data is sent from the simulation to the visualization
nodes through the network.

Some in situ visualization frameworks such as GLEAN [36] can be considered
hybrid, placing some tasks close to the simulation in a time-partitioning manner
while other tasks run on dedicated nodes.

2.2.2. From Offline to In Situ Visualization: Another Source of Variability

The increasing amounts of data generated by scientific simulations also leads
to performance degradations when it comes to reading back data for analysis
and visualization [37, 38]. While I/O introduces run time variability, in situ
analysis and visualization can also negatively impact the performance of the
simulation/visualization complete workflow. For instance, periodically stopping
the simulation to perform in situ visualization in a time-partitioning manner
leads to a loss of performance and an increase of run-time variability. Contrary
to the performance of the simulation itself, the performance of visualization
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tasks may depend on the content of the data and is therefore unbalanced across
processes and across iterations. This variability is further amplified if the in situ
visualization framework is interactive, in which case the user himself impacts
the performance of his application.

In a loosely-coupled approach to in situ visualization, sending data through
the network potentially impacts the performance of the simulation and forces
a reduced number of nodes to sustain the input of a large amount of data.
Transferring such large amounts of data through the network also have a po-
tentially larger impact on the simulation than running visualization tasks in a
tightly-coupled manner.

2.3. Our Vision: Using Dedicated Cores for I/O and In Situ Visualization

Despite the limitations of the traditional, offline approach to data analysis
and visualization, users are still seldom moving to purely in situ visualization
and analysis [39, 40, 41]. The first reason is the development cost of such a
step in large codes that were maintained for decades. The second reason is that
storage I/O is still required for checkpoint-based fault tolerance, which makes
offline analysis of checkpoints the natural candidate for scientific discovery.

To push further the adoption of in situ visualization and increase the produc-
tivity of the overall scientific workflow, we postulate that a framework should be
provided that deals with all aspects of Big Data management in HPC simulations,
including efficient I/O but also in situ processing, analysis and visualization of
the produced data. Such a framework can at the same time provide efficient
storage I/O for data that need to be stored, and efficient in situ visualization
to speed up knowledge discovery and enable simulation monitoring.

Over the past 4 years we have been addressing this challenge by proposing,
designing and implementing the Damaris system to data management. Damaris
proposes to dedicate cores in multicore nodes for any type of data management
task, including I/O and in situ visualization. We tried to make Damaris simple
to use, flexible, portable and efficient in order to ease its adoption by the HPC
community. The following section gives an overview of this approach and its
implementation.

3. The Damaris Approach: an Overview

In order to address both I/O and in situ analysis/visualization issues, we pro-
pose to gather the I/O operations into a set of dedicated cores in each multicore
node. These cores (typically one per node) are dedicated to data management
tasks (i.e., they do not run the simulation code) in order to overlap writes and
analysis tasks with computation and avoid contention for accesses to the file
system. The cores running the simulation and the dedicated cores communi-
cate data through shared memory. We call this approach Damaris. Its design,
implementation and API are described below.

3.1. Design Principles

The Damaris approach is based on four main design principles.
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3.1.1. Dedicated Cores

The Damaris approach is based on a set of processes running on dedicated
cores in every multicore node. Each dedicated core performs in situ processing
and I/O in response to user-defined events sent by the simulation. We call a
process running the simulation a client, and a process running on a dedicated
core a server. One important aspect of Damaris is that dedicated cores do
not run the simulation. With the current trend in hardware solutions, the
number of cores per node increases. Thus dedicating one or a few cores has a
diminishing impact on the performance of the simulation. Hence, our approach
primarily targets SMP nodes featuring a large number of cores per node: 12
to 24 in our experiments. This arrangement might be even more beneficial in
future systems, for a variety of reasons: The number of cores increasing, neither
memory bandwidth nor power constraints may allow all cores to run compute-
intensive code; and reduced switching between different types of executions
improves performance.

3.1.2. Data Transfers through Shared Memory

Damaris handles large data transfers from clients to servers through shared
memory. This makes a write as fast as a memcpy and also enables direct allo-
cation of variables within the shared memory. This option is especially useful
to reduce the memory requirements of in situ visualization tasks, which can
directly access the memory of the simulation without requiring a copy (see our
previous work [2]).

3.1.3. High-Level Data Abstraction

Clients write enriched datasets in a way similar to scientific I/O libraries
such as HDF5 [19] or NetCDF [20]. That is, the data output by the simulation
is organized into a hierarchy of groups and variables, with additional metadata
such as the description of variables, their type, unit, and layout in memory.
The dedicated cores thus have enough knowledge of incoming datasets to write
them in existing high-level formats. This design principle differs from other ap-
proaches that capture I/O operations at a lower level [22, 29]. These approaches
indeed lose the semantics of the data being written. While our design choice
forces us to modify the simulation so that it writes its data using Damaris’ API,
is allows to implement semantic-aware data processing functionalities in dedi-
cated cores. In particular, keeping this level of semantics is mandatory in order
for dedicated cores to be able to write data in a standard, high-level format such
as HDF5 or NetCDF, or to feed an in situ visualization pipeline.

3.1.4. Extensibility through Plugins

Servers can perform data transformations prior to writing them, as well as
analysis and visualization. One major design principle in the Damaris approach
is the possibility for users to provide these transformations through a plugin
system, thus adapting Damaris to the particular requirements of their applica-
tion. Implementing such a plugin system at a lower level would not be possible,
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Figure 3: Software architecture of the implementation of Damaris.

as it would not have access to the high-level information about the data (e.g.,
dimensions of arrays, data types, physical meaning of the variable within the
simulation, etc.).

3.2. Architecture

Figure 3 presents the software architecture underlying the Damaris approach.
While Damaris can dedicate several cores in large multicore nodes, only one
client and one server are represented here.

Damaris has been designed in a highly modular way and features a number
of decoupled, reusable software components. The Shared Memory component
handles the shared buffer and ensures the safety of concurrent allocations/deal-
locations. The Distributed Reactor handles communications between clients and
servers, and across servers. The Metadata Manager stores high-level informa-
tion related to the data being transferred (type, size, layout, etc.). Finally the
Plugin Manager on the server side loads and runs user-provided plugins.

This modular architecture greatly simplified the adaptation to several HPC
platforms and simulations, as well as the development of extensions to support
various scenarios such as storage, in situ visualization, data compression or I/O
scheduling. The following sections describe each component in more detail.

3.2.1. Shared Memory

Data communications between the clients and the servers are performed
through the Shared Memory component. A large memory buffer is created on
each node by the dedicated cores at start time, with a size set by the user
(typically several MB to several GB). Thus the user has full control over the
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resources allocated to Damaris. When a client submits new data, it reserves a
segment of this shared-memory buffer. It then copies its data using the returned
pointer so that the local memory can be reused.

3.2.2. Distributed Reactor

The Distributed Reactor is the most complex component of Damaris. It
builds on the Reactor design pattern [42] to provide the means by which different
cores (clients and servers) communicate through MPI. Reactor is a behavioral
pattern that handles requests concurrently sent to an application by one or more
clients. The Reactor asynchronously listens to a set of channels connecting it to
its clients. The clients send small events that are associated with event handlers
(i.e., functions) in the Reactor. A synchronous event demultiplexer is in charge
of queuing the events received by the Reactor and calling the appropriate event
handlers. While clients communicate data through shared memory, they use
the Distributed Reactor, based on MPI, to send short notifications that either
new data is available in shared memory, or that a plugin should be triggered.

Contrary to a normal Reactor design pattern (as used in Boost.ASIO3 for
example), our Distributed Reactor also provides elaborate collective operations.

Asynchronous atomic multicast: A process can broadcast an event to a
group of processes at once. This operation is asynchronous, that is, the
sender does not wait for the event to be processed by all receivers to resume
its activity. A receiver only processes the event when all other receivers
are ready to process it as well. It is also atomic, that is, if two distinct
processes broadcast a different event, the Distributed Reactor ensures that
all receivers will handle the two events in the same order.

Asynchronous atomic labeled barrier: We call a “labeled” barrier across
a set of processes a synchronization barrier associated with an event (its
label). After all processes reach the barrier, they all invoke the event
handler associated with the event. This ensures that all processes agree
to execute the same code at the same logical time. This primitive is
asynchronous: it borrows its semantics from MPI 3’s MPI Ibarrier non-
blocking barrier. It is atomic according to the same definition as the
asynchronous atomic multicast.

These two distributed algorithms are important in the design of in situ pro-
cessing tasks that include communications between servers. In particular, they
ensure that plugins will be triggered in the same order in all servers, allowing
collective communications to safely take place within these plugins.

3.2.3. Metadata Manager

The Metadata Manager component keeps information related to the data
being written, including variables, layouts (describing the type and shape of

3See http://www.boost.org/
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blocks of data), parameters, etc. It is initialized using an XML configuration
file.

This design principle is inspired by ADIOS [43] and other tools such as
EPSN [44]. In traditional data formats such as HDF5, several functions have to
be called by the simulation to provide metadata information prior to actually
writing data. The use of an XML file in Damaris presents several advantages.
First, the description of data provided by the configuration file can be changed
without changing the simulation itself, and the amount of code required to use
Damaris in a simulation is reduced compared to existing data formats. Second,
it prevents clients from transferring metadata to dedicated cores through shared
memory. Clients communicate only data along with the minimum information
required by dedicated cores to retrieve the full description in their own Metadata
Manager.

Contrary to the XDMF format [45], which leverages XML to store scientific
datasets along with metadata (or points to data in external HDF5 files), our
XML file only provides metadata related to data produced by the simulation.
It is not intended to be an output format, or become part of one.

3.2.4. Plugin Manager

The Plugin Manager is the component that loads and stores plugins. Plugins
are pieces of C++ or Python codes provided by the user. The Plugin Manager
is capable of loading functions from dynamic libraries or scripts as well as from
the simulation’s code itself. It is initialized from the XML configuration file.
Again, the use of a common configuration file between clients and servers allows
different processes to refer to the same plugin through an identifier rather than
its full name and attributes.

A server can call a plugin when it receives its corresponding event, or wait
for all clients in a node or in the entire simulation to have sent the event. In
these later cases, the collective algorithms provided by the Distributed Reactor
ensure that all servers call the plugins in the same order.

3.3. Implementation

The Damaris approach is intended to be the basis for a generic, platform-
independent, application-independent, easy-to-use tool. This section describes
its main API and provides some technical details of its implementation.

3.3.1. Client API

Our implementation provides client-side interfaces for C, C++ and Fortran
applications written with MPI. This API can be summarized by the following
functions.

• damaris initialize("config.xml") initializes the resources used by Damaris
using the configuration file given as parameter. All cores (clients and
servers) call this function at the beginning of the simulation.
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• damaris start() is called by all cores to start servers on dedicated cores.
The servers block within this function, while the clients return and proceed
with the simulation.

• damaris get client comm() provides an MPI communicator gathering
only clients. Indeed the MPI COMM WORLD communicator contains
both clients and servers and cannot be used by the simulation anymore
for its collective communications.

• damaris write("var name",data) is called by clients. It copies the data
in shared memory along with minimal information and notifies the server
on the same node. All additional information such as the size of the data
and its layout can be found by the servers in the configuration file.

• damaris alloc("variable") is similar to malloc (or allocate in Fortran,
new in C++). It is called by clients to allocate a portion of shared memory
to hold the variable for a given iteration and returns a pointer. Only the
simulation is aware of this allocation, dedicated cores cannot access the
data. The returned buffer is expected to be used as output buffer for the
next iteration.

• damaris commit("variable") is called by clients when the simulation
has finished writing to the current buffer associated with the variable. It
sends the location of the data to the dedicated cores. Both the simulation
and dedicated cores can read the data. At this point, clients will use the
buffer as input for the next iteration while dedicated cores will use it as
input for visualization tasks.

• damaris clear("variable") is called by clients to notify the dedicated
cores that the committed data for this variable will no longer be used
by the simulation. It can safely be processed, stored or removed from
shared memory. The clients will issue another damaris alloc to get a
new portion of shared memory to use as output buffer.

• damaris signal("event name") is called by clients to send a custom
event to the server in order to trigger a plugin predefined in the con-
figuration file.

• damaris end iteration() notifies the servers that the simulation has
reached the end of an iteration and will start the next one. This al-
lows dedicated cores to know that the data written in shared memory is
consistent and nothing more should be expected for this iteration.

• damaris stop() stops the servers on dedicated cores, making them leave
the damaris start function.

• damaris finalize() frees the resources used by Damaris. It is called by
all processes after servers have been stopped on dedicated cores (using
damaris stop) before terminating the simulation.
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3.3.2. Technical Implementation Details

Damaris leverages the Boost.Interprocess library4 to implement several ver-
sions of the Shared Memory component, suitable for different platforms.

Our implementation of the Distributed Reactor relies on MPI 2 communi-
cation primitives and, in particular, non-blocking send and receive operations.
Events are simply implemented as 0-byte messages with the MPI tag carrying
the type of the event. Since the MPI 3 standard provides new non-blocking
collective functions such as MPI Ireduce or MPI Ibarrier, our Distributed Re-
actor could be easily re-implemented with these MPI 3 functions without any
impact on the rest of Damaris’ implementation.

Finally we used Model-Driven Engineering (MDE) techniques to implement
the Metadata Manager. Most of the source code of the Metadata Manager
is indeed automatically generated from an XSD metamodel. This metamodel
describes the concepts of variables, layouts, etc. as well as their relations to one
another and how they are described in an XML format. The XSD file is used
to synthesize C++ classes that correspond to the metamodel.

3.4. Managing Data with Damaris

Damaris is not a data format. It only provides a framework to dedicate cores
for custom data processing and I/O tasks, to transfer data through shared mem-
ory and to call plugins. Thanks to its plugin system, Damaris can be adapted
to many scenarios of in situ data processing. In this paper, we specifically use
it to periodically write data and to perform in situ visualization.

3.4.1. Writing Data

We implemented a plugin that gathers data from client cores and writes them
into HDF5 files. Each server running on a dedicated core produces a single file
per iteration. Compared with the file-per-process approach, this way of writing
produces fewer, bigger files, thus mitigating the bottleneck in metadata servers
when files are created. Writing from a reduced number of writers also has the
advantage of limiting network access contention across the cores of the same
node. Finally, issuing bigger writes to the file system usually allows for better
performance. Compared with the collective I/O approach, our writer plugin
does not require synchronization between processes.

3.4.2. Visualizing and Analyzing

The high-level data description provided by Damaris enables a connection
with existing visualization and analysis packages, including VisIt [46] or Par-
aView [47], in order to build a full in situ visualization framework. Both VisIt
and ParaView perform in situ visualization from in-memory data. Given that
each of these software has strengths, a major advantage of our approach is the
ability to switch between them with no code modification in the simulation.

4See http://www.boost.org/
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Figure 4: Example of a 4 × 4 × 4
rectilinear grid described by three
arrays of coordinates. In this
example there is a scalar value
(such as temperature or wind
velocity) at each node. The
mesh itself is described through
three coordinate arrays: mesh x

= {0.0,1.0,2.0,3.0}; mesh y

= {0.0,1.0,2.0,3.0}; mesh z =

{0.0,1.2,1.8,3.0}.

We leveraged the XSD-based metadata management in Damaris to provide
the necessary information to bridge simulations to existing visualization soft-
ware. By investigating the in situ interfaces of different visualization packages
including ParaView, VisIt, ezViz [48] and VTK [49], we devised a generic de-
scription of visualizable structures such as meshes, points or curves. Addition-
ally, the Distributed Reactor enables synchronization between dedicated cores,
which is necessary to run the parallel rendering algorithms implemented by the
aforementioned visualization software.

3.5. Code Sample using Damaris

Listing 1 is an example of a Fortran program that makes use of Damaris.
It writes three 1D arrays representing the coordinates of a rectilinear mesh. At
every iteration it then writes a 3D array representing temperature values on the
points of the mesh and sends an event to the dedicated core. The associated
configuration file, shown in Listing 2, describes the data that is expected to be
received by the servers, and the action to perform upon reception of the event.
More specifically, lines 14, 15, 16 and 18 of this XML file define layouts, which
describe the type and dimensions of a piece of data. Lines 26 to 33 define a
group, and within this group a set of variables that use these layouts. The
temperature variable is defined in line 35. Finally line 38 associates an event
with a function (or action) to be called when the event is received. It also
locates the function within a dynamically-loaded library.

The configuration file also contains information for visualization software.
Lines 20 to 24 in the XML file correspond to mesh structure drawn in Figure 4,
and built from the three coordinate variables. The temperature variable is
mapped onto this mesh using its mesh attribute.
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1 program example
2 integer ierr, is_client
3 real, dimension(64,16,2) :: temperature
4 real, dimension(4) :: x3d, y3d, z3d
5
6 ! initialization
7 call damaris_initialize_f("config.xml", MPI_COMM_WORLD, ierr)
8 call damaris_start_f(is_client, ierr)
9

10 if(is_client.eq.1) then
11
12 ! writing non-time-varying data
13 call damaris_write_f("coordinates/x3d", x3d, ierr)
14 call damaris_write_f("coordinates/y3d", y3d, ierr)
15 call damaris_write_f("coordinates/z3d", z3d, ierr)
16
17 do while(...) ! simulation main loop
18 ...
19 ! writing temperature data
20 call damaris_write_f("temperature", temperature, ierr)
21 ! sending signal
22 call damaris_signal_f("my_event", ierr)
23 ! end of iteration
24 call damaris_end_iteration_f(ierr)
25 ...
26 enddo
27 ! stopping the servers
28 call damaris_stop_f(ierr)
29 endif
30
31 ! finalization
32 call damaris_finalize_f(ierr)
33 end program example

Listing 1: Example of Fortran simulation using Damaris.

4. Evaluation

We evaluated Damaris with the CM1 atmospheric simulation [4] and ANL’s
Nek5000 CFD solver [5], on several platforms: NICS’s Kraken [3], three clusters
of the French Grid’5000 platform [9], NCSA’s BluePrint cluster and the Blue
Waters supercomputer [50]. In the following, we first evaluate Damaris in the
context of improving I/O performance by hiding the I/O variability. We then
evaluate the use of Damaris for several other data management tasks, including
data compression, I/O scheduling and in situ visualization.

4.1. Addressing the I/O Bottleneck with Damaris

In this first evaluation part, we show how Damaris is used to improve I/O
performance.

4.1.1. Description of the Applications

The following applications were used in our experiments.

CM1 (Cloud Model 1) is used for atmospheric research and is suitable for
modeling small-scale atmospheric phenomena such as thunderstorms and
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1 <simulation name="my_simulation" language="c"
2 xmlns="http://damaris.gforge.inria.fr/damaris/model">
3 <architecture>
4 <domains count="1"/>
5 <dedicated cores="1"/>
6 <buffer name="the_buffer" size="67108864" />
7 <queue name="the_queue" size="100" />
8 </architecture>
9 <data>

10 <parameter name="w" type="int" value="4" />
11 <parameter name="h" type="int" value="4" />
12 <parameter name="d" type="int" value="4" />
13
14 <layout name="mesh_x_layout" type="float" dimensions="w" />
15 <layout name="mesh_y_layout" type="float" dimensions="h" />
16 <layout name="mesh_z_layout" type="float" dimensions="d" />
17
18 <layout name="data_layout" type="double" dimensions="w,h,d"/>
19
20 <mesh name="mesh3d" type="rectilinear" topology="3">
21 <coord name="coordinates/x3d" unit="m" label="Width"/>
22 <coord name="coordinates/y3d" unit="m" label="Height"/>
23 <coord name="coordinates/z3d" unit="m" label="Depth"/>
24 </mesh>
25
26 <group name="coordinates">
27 <variable name="x3d" layout="mesh_x_layout"
28 visualizable="false" time-varying="false" />
29 <variable name="y3d" layout="mesh_y_layout"
30 visualizable="false" time-varying="false" />
31 <variable name="z3d" layout="mesh_z_layout"
32 visualizable="false" time-varying="false" />
33 </group>
34
35 <variable name="temperature" layout="data_layout" mesh="mesh3d"/>
36 </data>
37 <actions>
38 <event name="my_event" action="my_function" using="my_plugin.so" />
39 </actions>
40 </simulation>

Listing 2: Configuration file associated with the Fortran example.

tornadoes. It follows a typical behavior of scientific simulations, which
alternate computation phases and I/O phases. The simulated domain is
a regular 3D grid representing part of the atmosphere. Each point in this
domain is characterized by a set of variables such as local temperature or
wind speed. CM1 is written in Fortran 90. Parallelization is done using
MPI, by distributing the 3D array along a 2D grid of equally-sized sub-
domains, each of which is handled by a process. The I/O phase leverages
either HDF5 to write one file per process, or pHDF5 [51] to write in a
shared file in a collective manner. One of the advantages of using a file-
per-process approach is that compression can be enabled, which cannot be
done with pHDF5. However, at large process counts, the file-per-process
approach generates a large number of files, making all subsequent analysis
tasks intractable.
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Nek5000 is a computational fluid dynamics solver based on the spectral ele-
ment method. It is actively developed at ANL’s Mathematics and Com-
puter Science Division. It is written in Fortran 77 and solves its governing
equations on an unstructured mesh. This mesh consists of multiple el-
ements distributed across processes; each element is a small curvilinear
mesh. Each point of the mesh carries the three components of the fluid’s
local velocity, as well as other variables. We chose Nek5000 for this par-
ticular meshing structure, different from CM1, and for the fact that it is
substantially more memory-hungry than CM1. We modified Nek5000 in
order to pass the mesh elements and fields data to Damaris.

Nek5000 takes as input the mesh on which to solve the equations, along
with initial conditions. We call this set a configuration. In our experi-
mental evaluation, we used the MATiS configuration, which was designed
to run on 512 to 2048 cores. Another configuration, turbChannel, is used
in Section 4.2 to evaluate in situ visualization. This configuration was
designed to run on 32 to 64 cores.

4.1.2. Platforms and Configurations

With the CM1 application, our goal was to optimize CM1’s I/O for fu-
ture use on the upcoming Blue Waters Petascale supercomputer. Therefore we
started with NCSA’s IBM Power5 BluePrint platform as it was supposed to
be representative of Blue Waters’ hardware. On this platform, we evaluated
the scalability of the CM1 application with respect to the size of its output,
with the file-per-process and Damaris approaches. We then experimented on
the parapluie cluster of Grid’5000’s Rennes site. This cluster features 24-core
nodes, which makes it very suitable to our approach based on dedicated cores.
We then moved our experiments to NICS’s Kraken supercomputer, which, in
addition to allowing runs at much larger scales, has a hardware configuration
very close to that of Blue Waters’ final design.

With Nek5000, our goal was to confirm the usability of Damaris with a more
memory-hungry application. We completed our experimentation on the stremi
cluster of Grid’5000’s Reims site, which provides the same type of hardware as
the parapluie cluster, but a different network. All these platforms are detailed
hereafter, along with the configuration of CM1 and Nek5000 we used.

BluePrint is a test platform used at NCSA until 2011 when IBM was still in
charge of delivering the Blue Waters supercomputer.5 BluePrint features
120 Power5 nodes. Each node consists of 16 cores and includes 64 GB
of memory. As for its file system, GPFS is deployed on 2 I/O servers.
CM1 was run on 64 nodes (1024 cores), with a 960 × 960 × 300-point
domain. Each core handles a 30 × 30 × 300-point subdomain with the

5As IBM terminated its contract with NCSA in 2011 and Blue Waters was finally deliv-
ered by Cray, BluePrint was later decommissioned and replaced with a test platform, JYC,
matching the new Blue Waters’ design.
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standard approaches, that is, when no dedicated cores are used. When
dedicating one core out of 16 on each node, computation cores handle a
24 × 40 × 300-point subdomain. On this platform we vary the number of
variables that CM1 writes, resulting in different sizes of the output. We
enabled the compression feature of HDF5 for all the experiments done on
this platform.

Grid’5000 is a French grid testbed. We use its parapluie cluster on the Rennes
site and its stremi cluster on the Reims site. On the Rennes site, the para-
pluie cluster featured 40 nodes of 2 AMD 1.7 GHz CPUs, 12 cores/CPU,
48 GB RAM. We run CM1 on 28 nodes (672 cores) and 38 nodes (912
cores). We deployed a PVFS file system on 15 separate I/O servers (2 In-
tel 2.93 GHz CPUs, 4 cores/CPU, 24 GB RAM, 434 GB local disk). Each
PVFS node was used both as I/O server and metadata server. All nodes
(including the file system’s) communicate through a 20G InfiniBand 4x
QDR link connected to a common Voltaire switch. We use MPICH [52]
with ROMIO [53] compiled against the PVFS library, on a Debian Linux
operating system. The total domain size in CM1 is 1104 × 1120 × 200
points, so each core handles a 46× 40× 200-point subdomain with a stan-
dard approach, and a 48 × 40 × 200-point subdomain when one core out
of 24 is used by Damaris.

On the Reims site the stremi cluster features the same type of node as the
parapluie cluster. We run Nek5000 on 30 nodes (720 cores). We deploy
PVFS on 4 nodes of the same cluster. Each PVFS node is used both as
I/O server and metadata server. All nodes communicate through a 1G
Ethernet network. We use the MATiS configuration of Nek5000, which
contains 695454 elements (small 4 × 2 × 4 curvilinear sub-meshes). These
elements are distributed across available simulation processes. Thus the
total number of elements (and thus the total amount of data output) does
not vary whether we use dedicated cores or not. When no dedicated cores
are used, each core handles 965 or 966 such elements. When dedicating
one core out of 24, each simulation core handles 1007 or 1008 elements.

Kraken was a supercomputer deployed at the National Institute for Computa-
tional Sciences (NICS). It was ranked 11th in the Top500 [54] at the time
of the experiments, with a peak Linpack performance of 919.1 Teraflops.
It featured 9408 Cray XT5 compute nodes connected through a Cray
SeaStar2+ interconnect and running Cray Linux Environment (CLE).
Each node has 12 cores and 16 GB of local memory. Kraken provided
a Lustre file system using 336 block storage devices managed by 48 I/O
servers and one metadata server.

On this platform, we studied the weak scalability of the file-per-process,
collective I/O and Damaris approaches in CM1, that is, we measured how
the run time varies with a fixed amount of data per node. When all cores
in each node are used by the simulation, each client process handles a
44 × 44 × 200-point subdomain. Using Damaris, each client process (11
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Figure 5: Duration of a write phase on Kraken
(average and maximum). For readability rea-
sons we do not plot the minimum write
time. Damaris shows to completely remove
the I/O variability while file-per-process and
collective-I/O have a big impact on the run-time
predictability.

per node) handles a 48×44×200-point subdomain, which makes the total
problem size equivalent for a given total number of cores.

4.1.3. How Damaris Affects the I/O Variability

Impact of the Number of Cores on the I/O Variability. We studied the impact
of the number of cores on the simulation’s write time with the three I/O ap-
proaches: file-per-process, collective I/O, and Damaris. To do so, we ran CM1
on Kraken with 576, 2304 and 9216 cores.

Figure 5 shows the average and maximum duration of an I/O phase on
Kraken from the point of view of the simulation. It corresponds to the time
between the two barriers delimiting the I/O phase. This time is extremely high
and variable with Collective I/O, achieving more than 800 seconds on 9216 cores.
The average of 481 seconds still represents about 70% of the overall simulation’s
run time.

By setting the stripe size to 32 MB instead of 1 MB in Lustre, the write
time went up to 1600 seconds with a collective I/O approach. This shows
that bad choices of file system’s configuration can lead to extremely poor I/O
performance. Yet it is hard to know in advance the configuration of the file
system and I/O libraries that will lead to a good performance.

The file-per-process approach appears to lead to a lower variability, especially
at large process count, and better performance than collective I/O. Yet it still
represents an unpredictability (difference between the fastest and the slowest
phase) of about ±17 seconds. For a one month run, writing every 2 minutes
would lead to an uncertainty of several hours to several days of run time.

When using Damaris, we dedicate one core out of 12 on each node, thus po-
tentially reducing the computation performance for the benefit of I/O efficiency
(the impact on overall application performance is discussed in the next section).
As a means to reduce the I/O variability, this approach is clearly effective: the
time to write from the point of view of the simulation is cut down to the time
required to perform a series of copies in shared memory. It leads to an apparent
write time of 0.2 seconds (as opposed to the 481 seconds of collective I/O!) and
does not depend anymore on the number of processes. The variability is in order
of ±0.1 seconds (too small to be seen on the figure).
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Figure 6: Duration of a write phase (average,
maximum and minimum) using file-per-process
and Damaris on BluePrint (1024 cores). The
amount of data is given in total per write phase.

Impact of the Amount of Data on the I/O Variability. On BluePrint, we vary
the amount of data. We aim to compare the file-per-process approach with
Damaris with respect to different output sizes. The results are reported in
Figure 6. As we increase the amount of data, the variability of the I/O time
increases with the file-per-process approach. With Damaris however, the write
time remains in the order of 0.2 seconds for the largest amount of data and the
variability in the order of ±0.1 seconds again.

Note that on this platform, data compression was enabled. Thus the ob-
served variability comes not only from the bottleneck at the file system level,
but also from the different amounts of data that are written across processes
and across iterations. This illustrates the fact that I/O variability does not
only comes from the variability of performance of data transfers and storage,
but also on any pre-processing task occurring before the actual I/O. Damaris is
therefore able to hide this pre-processing variability as well.

Impact of the Hardware. We studied the impact of the hardware on the I/O vari-
ability using Grid’5000’s parapluie and stremi clusters. With the large number
of cores per node (24) in these clusters as well as a network has substantially
lower performance than that of Kraken and BluePrint, we aim to illustrate the
large variation of write time across cores for a single write phase.

We ran CM1 using 672 cores on the parapluie cluster, writing a total of
15.8 GB uncompressed data (about 24 MB per process) every 20 iterations.
With the file-per-process approach, CM1 reported spending 4.22% of its time in
I/O phases. Yet the fastest processes usually terminate their I/O in less than
1 second, while the slowest take more than 25 seconds. Figure 7 (a) shows the
CDF (cumulative distribution function) of write times for one of these write
phases, with a file-per-process approach and with Damaris.

Finally we ran Nek5000 using 720 cores on the stremi, writing a total of
3.5 GB per iteration using a file-per-process approach. Figure 7 (b) shows the
cumulative distribution function of write time for one of these write phases with
the file-per-process approach and with Damaris.

In both simulations, we observe a large difference in write time between the
fastest and the slowest process with a file-per-process approach, due to access
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Figure 7: Cumulative distribution function of the write time across processes when running
CM1 on 672 cores of Grid’5000’s Rennes cluster and Nek5000 on 720 cores of the Reims
cluster.

contention either at the level of the network or within the file system. With
Damaris however, all processes complete their write at the same time. This is
due to the absence of contention when writing in shared memory.

Conclusion. Our experiments show that by replacing write phases with simple
copies in shared memory and by leaving the task of performing actual I/O to
dedicated cores, Damaris is able to completely hide the I/O variability from
the point of view of the simulation, making the application run time more
predictable.

4.1.4. Application’s Scalability and I/O Overlap

Impact of Damaris on the Scalability of CM1. CM1 exhibits a very good weak
scalability and very stable performance when it does not perform any I/O. Thus,
as we increase the number of cores, the scalability becomes mainly driven by
the scalability of the I/O phases.

Figure 8 shows the application run time for 50 iterations plus one write
phase. The steady run time when no writes are performed illustrate this perfect
scalability. Damaris enables a nearly perfect scalability where other approaches
fail to scale. In particular, going from Collective I/O to Damaris leads to a 3.5×
speedup on 9216 cores.

I/O Overhead. Another way of analyzing the effect of dedicating cores to I/O
is by looking at the CPU hours wasted in I/O tasks. With a time-partitioning
approach, this overhead corresponds to the duration of a write phase (expressed
in hours) multiplied by the total number of cores. With dedicated cores, this
overhead corresponds to the duration of the computation phase multiplied by
the number of dedicated cores. Note that this metrics does not take into account
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Cores Simulation w/o I/O File-per-process Collective-I/O Damaris
576 38.1 7.9 32.9 3.4
2304 152.5 89.2 203.3 13.8
9216 609.8 378.8 1244.3 54.5

Table 1: CPU hours wasted in I/O tasks (including processes remaining idle waiting for de-
pendent tasks to complete), for 50 computation steps and 1 I/O phase of the CM1 application
on Kraken. The “Simulation w/o I/O” column represents the CPU-hours required by the
simulation to complete the 50 computation steps at this scale.

the effect of dedicating cores on the duration of a computation phase, hence the
need for the study of the impact on the application’s scalability, conducted
earlier.

Table 1 shows the CPU hours wasted in I/O tasks, when running CM1 for
50 computation steps and 1 I/O phase. To put these numbers in perspective,
the “Simulation without I/O” column shows the CPU hours required by the
simulation to complete the 50 iterations without any I/O and without any ded-
icated cores. It shows, for example, that using a Collective-I/O approach on
9216 wastes 1244.3 CPU-hours, twice as much as the CPU-hours required by
the simulation at this scale. The CPU-hours wasted by Damaris at this scale,
on the other hand are as low as 54.5.

Idle Time in Damaris. Since the scalability of our approach comes from the fact
that I/O overlaps with computation, we still need to show that the dedicated
cores have enough time to perform the actual I/O while computation goes on.

Figure 9 shows the time used by the dedicated cores to perform the I/O on
Kraken and BluePrint with CM1, as well as the time they remain idle, waiting
for the next iteration to complete.

As the amount of data on each node is the same, the only explanation for
the dedicated cores to take more time at larger process counts on Kraken is the
access contention for the file system. On BluePrint the number of processes
is constant for each experiment, thus the differences in write time come from
the different amounts of data. In all configurations, our experiments show that
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Figure 9: Time spent by the dedicated cores writing data for each iteration. The spare time
is the time dedicated cores are not performing any task.
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Figure 10: CDF of the time spent by dedicated
cores writing (statistics across 11 iterations for
30 dedicated cores), with Nek5000 on the Reims
cluster of Grid’5000.

Damaris has much spare time, during which dedicated cores remain idle. Similar
results were obtained on Grid’5000. While the idle time of the dedicated cores
may seem to be a waste (provided that no in situ data processing leverages it),
it can reduce the energy consumption of the node; this saving will be significant
in future systems that will have sophisticated dynamic power management.

With Nek5000, Figure 10 shows the cumulative distribution function (CDF)
of the time spent by dedicated cores writing. This time averages to 9.41 seconds,
which represents 10% of overall run time. Thus, dedicated cores remain idle 90%
of the time. Additionally, this figure shows that the time spent by dedicated
cores writing is stable across iterations and across processes, with a standard
deviation of 1.08 seconds. This stability allows to add additional data processing
tasks without worrying about the possibility that dedicated cores spend an
unpredictable time writing.
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Figure 11: Average aggregate throughput
achieved on Kraken with the different ap-
proaches. Damaris shows a 6 times improvement
over the file-per-process approach and 15 times
over Collective I/O on 9216 cores.

Aggregate throughput
File-per-process 695 MB/s

Collective-I/O 636 MB/s
Damaris 4.32 GB/s

Table 2: Average aggregate through-
put on Grid’5000’s parapluie cluster,
with CM1 running on 672 cores.

Conclusion. On all platforms, Damaris shows that it can fully overlap writes
with computation and still remain idle 75% to 99% of time with CM1 (see
Figure 9), and 90% with Nek5000 (see Figure 10). Thus, without impacting the
application, it becomes possible to further increase the frequency of output, or
to perform additional data processing operations such as in situ data analysis
and visualization.

4.1.5. Aggregate I/O Throughput

We then studied the effect of Damaris on the aggregate throughput observed
from the computation nodes to the file system, that is, the total amount of data
output by the simulation (whether it is transfered directly to the file system or
goes through dedicated cores) divided by the amount of time it takes for this
data to be stored.

Figure 11 presents the aggregate throughput obtained by CM1 with the three
approaches on Kraken. At the largest scale (9216 cores) Damaris achieves an
aggregate throughput about 6 times higher than the file-per-process approach,
and 15 times higher than collective I/O. The results obtained on 672 cores of
Grid’5000 are presented in Table 2. The throughput achieved with Damaris here
is more than 6 times higher than the other two approaches. Since compression
was enabled on BluePrint, we do not provide the resulting throughputs, as it
depends on the overhead of the compression algorithm used and the resulting
size of the data.

A higher aggregate throughput for the same amount of data represents a
shorter utilization time of the network and file system. It reduces the probability
that the simulation interfere with other applications concurrently accessing these
shared resources, in addition to potentially reducing their energy consumption.

With Nek5000 on the stremi cluster of Grid’5000, Table 3 shows that Damaris
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Aggregate throughput
File-per-process 73.5 MB/s

Damaris 337.6 MB/s

Table 3: Average aggregate through-
put on Grid’5000’s stremi cluster, with
Nek5000 running on 720 cores.

enables a 4.6× increase of throughput, going from 73.5 MB/s with the file-per-
process approach, to 337.6 MB/s with one dedicated core per node.

Conclusion. By avoiding process synchronization and access contention at the
level of a node and by gathering data into bigger files, Damaris reduces the I/O
overhead, effectively hides the I/O variability and substantially increases the
aggregate throughput, thus making a more efficient use of the file system.

4.1.6. Improvements: Leveraging the Spare Time

Section 4.1.4 showed that, with both applications, dedicated cores remain
idle most of the time. In order to leverage the spare time in dedicated cores, we
implemented two improvements: compression, and transfer delays. These im-
provements are evaluated hereafter in the context of CM1. Again here, Damaris
aggregates data to write one file per dedicated core.

Compression. We used dedicated cores to compress the output data prior to
writing it. Using lossless gzip compression, we observed a compression ratio of
1.87 : 1. When writing data for offline visualization, atmospheric scientists can
afford to reduce the floating point precision to 16 bits, as it does not visually
impact the resulting images. Doing so leads to nearly 6 : 1 compression ratio
when coupling with gzip. On Kraken, the time required by dedicated cores
to compress and write data was twice longer than the time required to simply
write uncompressed data. Yet contrary to enabling compression in the file-per-
process approach, the overhead and jitter induced by the compression phase is
completely hidden within the dedicated cores, and do not impact the running
simulation. In other words, compression is offered for free by Damaris.

Data Transfer Delays. Additionally, we implemented in Damaris the capability
to delay data movements. The algorithm is very simple and does not involve
any communication between processes: each dedicated core computes an esti-
mation of the duration of an iteration of the simulation by measuring the time
between two consecutive calls to damaris end iteration (about 230 seconds
on Kraken). This time is then divided into as many slots as there are dedi-
cated cores. Each dedicated core waits for its slot before writing. This avoids
access contention at the level of the file system. We evaluated this strategy on
2304 cores on Kraken, the aggregate throughput reaches 13.1 GB/s on aver-
age, instead of 9.7 GB/s when this algorithm is not used, which improves the
file system utilization and makes dedicated cores spare more time that can be
leveraged for other in situ processing tasks.
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Figure 12: Write time in the dedicated cores
when enabling compression or transfer delays.

Summary. These two improvements have also been evaluated on 912 cores of
Grid’5000. All results are synthesized in Figure 12, which shows the average
write time in dedicated cores. The delay strategy reduces the write time in
both platforms. Compression however introduces an overhead on Kraken, thus
we are facing a tradeoff between reducing the storage space used or reducing the
spare time. A potential optimization would be to enable or disable compression
at run time depending on the need to reduce write time or storage space.

4.2. Using Damaris for In Situ Visualization

Far from being restricted to performing I/O, Damaris can also leverage the
high-level description of data provided in its configuration file to feed in situ
visualization pipelines. In the following we evaluate such use of Damaris for
in situ visualization. We highlight two aspects: scalability of the visualization
algorithms when using dedicated cores, and impact of in situ visualization on
application run time.

4.2.1. Platforms and Configurations

We use again the CM1 and Nek5000 applications presented in the previ-
ous sections, respectively on Blue Waters and Grid’5000. The platforms and
configurations of the experiments are described hereafter.

Blue Waters Blue Waters [50] is a 13.3-petaflops supercomputer deployed at
NCSA. It features 26,864 nodes in 237 Cray XE6 cabinets and 44 Cray
XK7 cabinets, running Cray Linux Environment (CLE). We leveraged the
XE6 nodes, each of which features 16 cores.

Methodology with CM1 on Blue Waters. CM1 requires a long run time before
an interesting atmospheric phenomenon appears, and such a phenomenon may
not appear at small scale. Yet contrary to the evaluation of I/O performance, we
need visualizable phenomena to appear in order to evaluate the performance of
in situ visualization tasks. Thus we first ran CM1 with the help of atmospheric
scientists to produce relevant data. We generated a representative dataset of
3840 × 3840 × 400 points spanning several iterations.
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(a) CM1 Isosurface (b) CM1 Ray Casting (c) Nek5000 Isosurface

Figure 13: Example results obtained in situ with Damaris: (a) 10-level isosurface of the DBZ
variable on 6400 cores (Blue Waters). (b) Ray-casting of the dbz variable on 6400 cores (Blue
Waters). (c) Ten-level isosurface of the y velocity field in the TurbChannel configuration of
Nek5000.

We then extracted the I/O kernel from the CM1 code and built a program
that replays its behavior at a given scale and with a given resolution by reload-
ing, redistributing and interpolating the precomputed data. The I/O kernel,
identical to the I/O part of the simulation, calls Damaris functions to transfer
the data to Damaris. Damaris then performs in situ visualization through a
connection to VisIt’s libsim library [30], either in a time-partitioning manner or
using dedicated cores. Our goal with CM1 is to show the interplay between the
scalability of the visualization tasks and the use of dedicated cores to run them.

Methodology with Nek5000 on Grid’5000. With Nek5000, we used the stremi
cluster of Grid’5000 already presented in the previous section. In addition to
the MATiS configuration, we also use the turbChannel configuration, which runs
at smaller scales and is more appropriate for interactive in situ visualization.
Our goal with Nek5000 is to show the impact of in situ visualization on the
variability of the application’s run time.

Using Damaris in Time-Partitioning Mode. In order to compare the tradi-
tional “time-partitioning” approach with the use of dedicated cores enabled
by Damaris, we added a time-partitioning mode in Damaris. This mode, which
can be enabled through the configuration file, prevents Damaris from dedicating
cores, and runs all plugins in a synchronous manner on all cores running the
simulation. This mode allows us to compare the traditional time-partitioning
in situ visualization approach with the use of dedicated cores without having to
modify the simulations twice.

4.2.2. Impact of Dedicated Cores on the Scalability of Visualization Tasks

With CM1 on Blue Waters, we measured the time (average of 15 iterations)
to complete either an isosurface rendering or a ray casting rendering using time
partitioning and dedicated cores for each scenario. The comparative results are
reported in Figure 14.
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Figure 14: Rendering time using ray-casting and isosurfaces, with time-partitioning and dedi-
cated cores with CM1. Note that the number of cores represents the total number used for the
experiments; using a dedicated-core approach, 1/16 of this total number is effectively used for
in situ visualization, which explains the overall higher rendering time with dedicated cores.

The isosurface algorithm (resulting image presented in Figure 13 (a)) scales
well with the number of cores using both approaches. A time-partitioning ap-
proach would thus be appropriate if the user does not need to hide the run time
impact of in situ visualization. However, on 6400 cores, it takes as much time
to complete the rendering as on 400 dedicated cores. In terms of pure compu-
tational efficiency, an approach based on dedicated cores is thus 16 times more
efficient.

The ray-casting algorithm (resulting image presented in Figure 13 (b)) on
the other hand has a poorer scalability. After decreasing, the rendering time
goes up again at a 6400-core scale, and it becomes about twice more efficient to
use a reduced number of dedicated cores to complete this same rendering.

Conclusion. The choice of using dedicated cores versus a time-partitioning in
situ visualization approach depends on (1) the intended visualization scenario,
(2) the scale of the experiments and (3) the intended frequency of visual output.
Our experiments show that at small scale, the performance of rendering algo-
rithms are good enough to be executed in a time-partitioning manner, provided
that the user is ready to increase the run time of his simulation. At large scale
however, it becomes more efficient to use dedicated cores, especially when using
ray-casting, where the observed rendering performance is substantially better
when using a reduced number of processes.

4.2.3. Impact of In Situ Visualization on Run Time Variability

Our goal in this series of experiments is to show the impact of in situ visu-
alization tasks on the run-time variability of the simulation, and to show how
dedicated cores help alleviate this variability. We show in particular the effect
of interactivity on this variability. We use Nek5000 for this purpose.
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Figure 13 (c) shows the result of a 10-level isosurface rendering of the fluid
velocity along the y axis, with the TurbChannel case. We use the MATiS
configuration to show the scalability of our approach based on Damaris against
a standard, time-partitioning approach.

Results with the TurbChannel Configuration. To assess the impact of in situ
visualization on the run time, we run TurbChannel on 48 cores using the two
approaches: first we use a time-partitioning mode, in which all 48 cores are
used by the simulation and synchronously perform in situ visualization. Then
we switch on one dedicated core per node, leading to 46 cores being used by the
simulation while 2 cores asynchronously run the in situ visualization tasks.

In each case, we consider four scenarios:

1. The simulation runs without visualization;

2. A user connects VisIt to the simulation but does not ask for any output;

3. The user asks for isosurfaces of the velocity fields but does not interact
with VisIt any further (letting the Damaris/Viz update the output after
each iteration);

4. The user has heavy interactions with the simulations (for example render-
ing different variables, using different algorithms, zooming on particular
domains, changing the resolution).

Figure 15 presents a trace of the duration of each iteration during the four
aforementioned scenarios using the two approaches. Figure 15 (a) shows that
in situ visualization using a time-partitioning approach has a large impact on
the simulation run time, even when no interaction is performed. The simple act
of connecting VisIt without rendering anything forces the simulation to at least
update metadata at each iteration, which takes time. Figure 15 (b) shows that
in situ visualization based on dedicated cores, on the other hand, is completely
transparent from the point of view of the simulation.

Results with the MATiS Configuration. We ran the MATiS configuration on 816
cores of the stremi cluster. Each iteration takes approximately one minute and
due to the size of the mesh, it is difficult to perform interactive visualization.
Therefore we connect VisIt and simply query for a 3D pseudo-color plot of the
vx variable (x component of the fluid velocity) that is then updated at desired
iterations.

For the following results, the time-partitioning approach initially outputs
one image every time step, while dedicated cores adapted the output frequency
to one image every 25 time steps in order to avoid blocking the simulation
when the shared memory buffer becomes full. To conduct a fair comparison, we
thus setup the time-partitioning mode such that it outputs one image every 25
iterations.

Figure 16 reports the behavior of the application with and without visual-
ization performed, and with and without dedicated cores, for the configurations
described above. Corresponding statistics are presented in Table 4.
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Figure 15: Variability in run time induced by different scenarios of in situ interactive visual-
ization.

Table 4: Average iteration time of the Nek5000 MATiS configuration with a time-partitioning
approach and with dedicated cores, with and without visualization.

Iteration Time Average Std. dev.

Time Partitioning
w/o vis. 75.07 sec 22,93
with vis. 83.16 sec 43.67

Space Partitioning
w/o vis. 67.76 sec 20.09
with vis. 64.79 sec 20.44

Conclusion. Time-partitioning visualization not only increases the average run
time but also increases the standard deviation of this run time, making it more
unpredictable. On the other hand, the approach based on dedicated cores yields
more consistent results. One might expect dedicated cores to interfere with the
simulation as it performs intensive communications while the simulation runs.
However, in practice we observe very little such run time variation.

We also remark that decreasing the number of cores used by the simulation
can actually decreases its run time. Nek5000 on Grid’5000, for instance, has to
run with a number of nodes that is too large, in order to have enough memory.

5. Discussion: Dedicated Cores vs. Dedicated Nodes

Two important questions can be asked about approaches like Damaris, which
propose to dedicate cores for data processing and I/O.

• How many dedicated cores should be used?

• How does dedicating cores compares with dedicating nodes?
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Figure 16: Iteration time of the MATiS configuration with a time partitioning approach (top)
or a space partitioning approach (bottom), without visualization (left), with visualization
(right).

In this section we propose to answer these two questions through experi-
ments with the CM1 and Nek5000 simulations on Grid’5000. We implemented
in Damaris the option to use dedicated nodes instead of dedicated cores. Some
details of this implementation are given hereafter, before diving into our exper-
imental results.

We restrict our study to I/O. The choice of dedicating cores over dedicating
nodes for in situ visualization indeed depends on too many parameters (in-
cluding the amount of data involved, the simulation, the platform, and most
importantly the visualization scenarios) and deserves an entire study that we
reserve for a future work.
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5.1. Dedicated Nodes in Damaris

In order to compare dedicated cores with dedicated nodes, we either needed
a state-of-the-art framework that provides dedicated nodes, such as DataS-
pace [55], or to implement dedicated nodes inside the Damaris framework.
We chose the later because (1) our simulations are already instrumented with
Damaris’ API, allowing us to switch between each approach without having to
modify the simulation with another framework’s API, and (2) comparing the use
of dedicated cores in Damaris with the use of dedicated nodes in another frame-
work would make it harder to distinguish performance benefits coming from the
approach (dedicated cores vs. dedicated nodes) from performance benefits com-
ing from specific optimizations of the framework itself. This following section
gives an overview of our implementation of dedicated nodes in Damaris.

5.1.1. Implementation

The implementation of dedicated nodes in Damaris relies on asynchronous
MPI communications through Damaris’ Distributed Reactor. Each simulation
core is associated with a server running in a dedicated node. A dedicated node
hosts one server on each of its cores. Different simulation cores may thus interact
with the same dedicated node, but with a different core (a different server) in
this node.

When a client calls damaris write, it first sends an event to its associated
server. This event triggers a RemoteWrite callback in the server. When the
server enters this callback, it starts a blocking receive to get the data sent
by the client. The client sends its data to the server, along with metadata
information such as the id of the variable to which the data belongs. A buffer
is maintained in clients to allow these transfers to be non-blocking. When the
client needs to send data to dedicated nodes, it copies the data into this buffer
and issues a non-blocking send to the server using the copied data (note that
this communication phase is non-blocking in clients, but blocking on servers).
The status of this operation is checked in later calls to the Damaris API and
the buffer is freed when the transfer is completed.

Other solutions exist in the literature, for example using RDMA [56] (remote
direct memory access). We chose to use simple asynchronous communications
for simplicity and portability. The flexibility of our design, along with the recent
addition of dynamic RDMA windows in the MPI 3 standard, would ease such
an RDMA-based implementation in Damaris in a near future.

5.1.2. “Switching Gears”

Switching between dedicated cores and dedicated nodes, as well as chang-
ing the number of dedicated resources, can be done through the configuration,
without recompiling the application.

• <dedicated cores="n" nodes="0"/> enables n dedicated cores per node.
In our current implementation of Damaris, the number of cores per node
must divide evenly into the number of dedicated cores.

34



• <dedicated cores="0" nodes="n"/> enables n dedicated nodes. The
total number of nodes must divide evenly into the number of dedicated
nodes.

• <dedicated cores="0" nodes="0"/> disables dedicated cores and nodes.
It triggers the time-partitioning mode.

This configuration would allow for a hybrid approach that uses both dedi-
cated cores and dedicated nodes. However this approach is not supported by
Damaris yet, as we haven’t found any real-life scenario that would benefit from
it.

The implementation of all three approaches –time partitioning, dedicated
cores, dedicated nodes– within the same framework allows us to evaluate their
respective performance in the next sections.

5.2. Dedicated Core(s) vs. Dedicated Nodes: an Experimental Insight

In the following, we present the results obtained with the Nek5000 and CM1
simulations, using the different modes in which Damaris can now operate.

5.2.1. Results with the Nek5000 Application

We used the MATiS configuration of Nek5000 and ran it on 30 nodes (720
cores) of the Grid’5000’s stremi cluster. We deploy PVFS on 4 additional nodes
of this cluster. All nodes (including the file system) communicate through a 1G
Ethernet network.

Nek5000 initially wrote most of its checkpoint/restart data in the form of
ASCII files, which appeared to be highly inefficient compared to using a high-
level data format such as HDF5. We thus rewrote its I/O part as an HDF5-based
plugin for Damaris, and used Damaris in 7 configurations: without dedicated
resources (time partitioning, abbreviated TP), using 1, 2, or 3 dedicated cores
per node (abbreviated DC(1), DC(2) and DC(3)), and using 2, 3 or 5 dedicated
nodes (DN(14:1), DN(9:1), DN(5:1) respectively, where the notation x : y repre-
sents the ratio of computation nodes to dedicated nodes). Despite the different
number of simulation cores in each configuration, the same mesh is used as input
for Nek5000 and, therefore, the same amount of data is produced (about 3.5 GB
per iteration). We run Nek5000 for 10 such iterations in each configuration.

Overall run time. All configurations based on dedicated resources enable a 40%
decrease of overall run time compared with the time-partitioning configuration.
Note that because of the inherent variability of the duration of the computation
phases within a single iteration (represented in Figure 17 (a) by the minimum
and maximum iteration times), it is not possible to tell which of the configura-
tion is actually the best one. Considering these results only, we can argue that
using more dedicated cores or more dedicated nodes is potentially an advanta-
geous choice (as long as the efficiency of running your simulation is not affected)
because it offers more resources for post-processing and I/O tasks. The choice
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Figure 17: Experiment with Nek5000 on 720 cores of Grid’5000 stremi cluster. Damaris is
configured to use either no dedicated resources (TP), x =1, 2 or 3 dedicated cores (DC(x)), or
a ratio of x computation nodes to y dedicated nodes (DN(x : y)). We report (a) the average,
maximum and minimum time of a single iteration (computation+I/O), and (b) the average,
maximum and minimum time (logarithmic scale) of an I/O phase from the point of view of
the simulation.

of using dedicated cores or dedicated nodes can then be based on the character-
istics of these post-processing time (scalability, memory requirement, execution
time, etc.).

I/O impact. Figure 17 (b) shows that the duration of the I/O phase as per-
ceived by the simulation becomes negligible when using an approach based on
dedicated resources. Dedicated cores reduce this time down to about 0.1 sec-
onds, while dedicated nodes reduce it to about 0.04 seconds. This difference
in communication time between dedicated cores and dedicated nodes can be
easily explained. When using dedicated cores, the client competes with other
clients for the access to a mutex-protected segment of shared memory. When
using dedicated nodes on the other hand, this contention does not occur, as
each client simply makes a local copy of its data and issues a non-blocking send
that proceeds in parallel with the simulation. Therefore, while the I/O phase
appears faster with dedicated nodes, our results do not show the potential im-
pact that background communications with dedicated nodes may have on the
performance of the simulation.

Aggregate throughput. From the point of view of writer processes (or from the
point of view of the file system), the different configurations lead to different
aggregate throughput. Figure 18 (a) shows that dedicated cores achieve the
highest throughput. This throughput is slightly degraded as the number of
dedicated cores per node increases, due to contention between dedicated cores
on the same node. Dedicated nodes also increase the aggregate throughput
compared with time partitioning, but do not achieve the throughput of dedicated
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Figure 18: Experiment with Nek5000 on 720 cores of Grid’5000 stremi cluster. Damaris is
configured to use either no dedicated resources (TP), x =1, 2 or 3 dedicated cores (DC(x)), or
a ratio of x computation nodes to y dedicated nodes (DN(x : y)). We report (a) the average,
maximum and minimum aggregate throughput from writer processes, and (b) the spare time
in dedicated processes for the approaches that leverage them.

cores. This is due to the fact that all cores in dedicated nodes are writing, and
thus compete for the network access at the level of each single dedicated nodes.
Additionally, the lower throughput observed when using only two dedicated
nodes can be explained by the fact that the file system features four data servers.
Therefore, dedicating only two nodes does not fully take advantage of parallelism
across writers.

Spare time. Finally, Figure 18 (b) shows the spare time in dedicated resources.
In all configurations based on dedicated cores, the dedicated cores spend 10%
of their time writing, and remain idle 90% of the time. Dedicated nodes spend
slightly more time writing (from 13 to 20% of their time). This is a direct
consequence of the difference in aggregate throughput.

Conclusion. Overall, all the configurations based on dedicated resources im-
prove the simulation run time in a similar way. These configurations however
differ in other aspects. By avoiding contention at the level of a node, dedicated
cores achieve a higher throughput and therefore spare more time that can be
used for data processing. Yet, if we weight this spare time by the number of
cores that can be used to leverage it (90 when dedicating 3 cores per node, 120
when dedicating 5 nodes), the configuration based on 5 dedicated nodes appears
to spare more resources (core-seconds) in spite of sparing less time per core.

The choice of whether one should use an approach based on dedicated cores
or dedicated nodes is of course not restricted to these considerations. Some
memory-bound simulations may not be able to afford allocating shared memory
to dedicated cores, and would rather benefit from dedicated nodes. Some I/O in-
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tensive simulations on the other hand may not be able to transfer large amounts
of data to a reduced number of dedicated nodes and will prefer dedicated cores.

5.2.2. Results with the CM1 application

In this section, we leverage experiments with the CM1 simulation to show
that the choice of one approach over another also depends on the platform
considered.

We used CM1 on Grid’5000’s Nancy and Rennes sites. On the Nancy site
we use the graphene cluster. Each node of this cluster consists of a 4-core Intel
Xeon 2.53 GHz CPU with 16 GB of RAM. Intra-cluster communication is done
through a 1G Ethernet network. A 20G InfiniBand network is used between
these nodes and the OrangeFS file system deployed on 6 I/O servers.

On the Rennes site we use the parapluie cluster, already presented in Sec-
tion 4.1. The nodes communicate with one another through a 1G Ethernet
network and with an OrangeFS file system deployed on 3 servers across a 20G
InfiniBand network.

We deploy CM1 on 32 nodes (128 cores) on the Nancy site. On the Rennes
site, we deploy it on 16 nodes (384 cores). In both cases, we configure CM1
to complete 2520 time steps. We vary its output frequency, using 10, 20 or 30
time steps between each output. Damaris is configured to run with CM1 in
five different scenarios that cover the three I/O approaches considered: time
partitioning, dedicated cores (one or two – DC(1) and DC(2)), and dedicated
nodes using a ratio of 7:1 (DN(7:1), 7 compute nodes for one dedicated node)
or 15:1 (DN(15:1), 15 compute nodes for one dedicated node). DN(7:1) thus
uses four dedicated nodes on the Nancy site, two on the Rennes site. DN(15:1)
dedicates two nodes on the Nancy site, one on the Rennes site.

Impact of the platform. Figure 19 shows that in both clusters, dedicating re-
sources drastically improve the performance of CM1 compared with a time-
partitioning approach. Dedicating four nodes on Nancy enables an almost 3×
overall speedup, while dedicating one core in each node on the Rennes cluster
leads to more than 5× speedup. Our results also show that the best approach in
terms of overall run time depends on the platform. It consists of using dedicated
nodes with a 7:1 ratio on the Nancy cluster, and using one dedicated core per
node on the Rennes cluster. This conclusion is not surprising, since the Nancy
cluster only provides 4 cores per node. Dedicating some of these cores thus has a
large impact on the simulation. On the Rennes cluster, which provides 24 cores
per node, dedicating some of these cores does not remove such an important
fraction of computational power from the simulation and is thus more efficient
than dedicating nodes.

5.3. Conclusion

Over the years, several research groups have proposed new approaches to
I/O and data processing based on dedicated resources. These approaches can
be divided into a group of approaches based on dedicated cores, and a group
of approaches based on dedicated nodes. While Damaris was initially part of
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Figure 19: Experiment with CM1 on Grid’5000 Rennes (24 cores per node) and Nancy (4 cores
per node) sites. Damaris is configured to use either no dedicated resources (TP), x =1 or 2
dedicated cores (DC(x)), or a ratio of 7:1 or 15:1 dedicated nodes (DN(7:1) and DN(15:1)).
We report total run time for 2520 time steps.

the first one, we extended it to support a wider range of configurations. It
now offers to dedicate either a subset of cores in each multicore node, or entire
nodes. Additionally, it also offers to not dedicate any resource at all, performing
all data processing and movement synchronously. This flexibility, made possible
in particular through a configuration file that allows us to switch between modes
very easily, let us to compare these approaches.

Our results show that dedicating resources for I/O is a highly efficient
method to improve the I/O performance of a simulation, both in terms of overall
run time, aggregate throughput and performance variability. They also high-
lighted the fact that there is no clear advantage of one approach over the other:
dedicating cores appears more efficient than dedicated nodes under certain con-
ditions, and the opposite holds under different conditions. The choice of one
approach over the other may also depend on criteria other than the overall run
time. Our experiments with Nek5000 showed that while this run time is very
similar under the different approaches, the resulting aggregate throughput fa-
vors dedicating cores, while the resulting spared resources (spare time × number
of cores in dedicated resources) advocates for using dedicated nodes. Our ex-
periments with CM1 showed that the choice of one approach over the other also
depends on the platform. While an approach based on dedicated cores is more
suitable on a platform featuring a large number of cores per node, it may be
more efficient to use dedicated nodes on a platform with a reduced number of
cores per node.
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6. Related Work

In this section, we position our work with respect to related work. We start
by discussing approaches that attempt at improving I/O performance. We then
examine approaches to in situ visualization.

6.1. Damaris in the “I/O Landscape”

Through its capability of gathering data into larger buffers and files, Damaris
can be compared to the data aggregation feature in ROMIO [53]. This feature
is an optimization of Collective I/O that leverages a subset of processes, called
“aggregators”, to actually perform the I/O on behalf of other processes. Yet,
data aggregation is performed synchronously in ROMIO: all processes that do
not perform actual writes in the file system must wait for the aggregator pro-
cesses to complete their operations. Besides, aggregators are not dedicated pro-
cesses, they run the simulation after completing their I/O. Through dedicated
cores, Damaris can perform data aggregation and potential transformations in
an asynchronous manner and still use the idle time remaining in the dedicated
cores.

Other efforts focus on overlapping computation with I/O in order to reduce
the impact of I/O latency on overall performance. Overlap techniques can be
implemented directly within simulations [57], using asynchronous communica-
tions. Non-blocking I/O primitives started to appear as part of the current
MPI 3 standard, these primitives are still implemented as blocking in practice.

Other approaches leverage data-staging and caching mechanisms [24, 58],
or forwarding approaches [26] to achieve better I/O performance. Forwarding
architectures run on top of dedicated resources in the platform, which are not
configurable by the end-user, that is, the user cannot run custom data processing
in forwarding resources. Similarly to the parallel file system, these dedicated re-
sources are shared by all users. This leads to cross-application access contention
and thus, to I/O variability. However, the trend toward I/O delegate systems
underlines the need for new I/O approaches. Our approach relies on dedicated
I/O cores at the application level, or dedicated nodes bound to the application,
rather than relying on hardware I/O-dedicated or forwarding nodes, with the
advantage of letting users configure their dedicated resources to best fit their
needs.

The use of local memory to alleviate the load on the file system is not new.
The Scalable Checkpoint/Restart (SRC) by Moody et al. [59] already makes
use of node-level storage to avoid the heavy load caused by periodic global
checkpoints. Yet their work does not use dedicated resources or threads to
handle or process data, and the checkpoints are not asynchronous.

Dedicated-Core-Based Approaches. Closest to our work are the approaches by
Li et al. [22], and Ma et al. [29]. While the general goals of these approaches are
similar (leveraging service-dedicated cores for non-computational tasks), their
design is different, and so is the focus and the (much lower) scale of their evalua-
tion. The first one mainly explores the idea of using dedicated cores in conjunc-
tion with SSDs to improve the overall I/O throughput. Architecturally, it relies
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on a FUSE interface, which introduces unnecessary copies through the kernel
and reduces the degree of coupling between cores. Using small benchmarks we
noticed that such a FUSE interface is about 10 times slower in transferring data
between cores than using shared memory. In the second, active buffers are han-
dled by dedicated processes that can run on any node and interact with cores
running the simulation through the network. In contrast to both approaches,
Damaris makes a much more efficient design choice using the shared intra-node
memory, thereby avoiding costly copies and buffering. The approach defended
by Li et al. is demonstrated on a small 32-node cluster (160 cores), where the
maximum scale used in the work by Ma et al. is 512 cores on a Power3 machine,
for which the overall improvement achieved for the global run time is marginal.
Our experimental analysis is much more extensive and more relevant for today’s
scales of HPC simulations: we demonstrated the excellent scalability of Damaris
on a real supercomputer (Kraken, ranked 11th in the Top500 supercomputer list
at the time of the experiments) with up to almost 10,000 cores, and with the
CM1 tornado simulation, one of the target applications of the Blue Waters
post-Petascale supercomputer project. We demonstrated not only a speedup in
I/O throughput by a factor of 15 (never achieved by previous approaches), but
we also showed that Damaris totally hides the I/O jitter and substantially cuts
down the application run time at such high scales. With Damaris, the execution
time for CM1 at this scale is even divided by 3.5 compared to approaches based
on collective I/O! Moreover, we further explored how to leverage the spare time
of the dedicated cores. We demonstrated for example that it can be used to
compress data by a factor of 6.

6.2. Damaris in the “In Situ Visualization Landscape”

Loosely-Coupled Visualization Strategies. Ellsworth et al. [60] propose to use
distributed shared memory (DSM) to avoid writing files when performing con-
current visualization. Such an approach has the advantage of decoupling the
simulation and visualization processes, but reading data from the memory of
the simulation’s processors can increase run time variability. The scalability of
a distributed shared memory design is also a limiting factor.

Rivi et al. [61] introduce the ICARUS plugin for ParaView together with a
description of VisIt and ParaView’s in situ visualization interfaces. ICARUS
employs an HDF5 DSM file driver to ship data to a distributed shared memory
buffer that is used as input to a ParaView pipeline. This DSM stores a view of
the HDF5 files that can be concurrently accessed by the simulation and visu-
alization tools. The HDF5 API allows to bridge the simulation and ParaView
with minimum code changes (provided that the simulation already uses HDF5),
but it produces multiple copies of the data and a complete transformation of
data into an intermediate HDF5 representation. Also, the visualization library
on the remote resource requires the original data to conform to this HDF5 rep-
resentation. Damaris, on the other hand, is not based on any data format and
efficiently leverages shared-memory to avoid as much as possible unnecessary
copies of data. Besides, its API is simpler than that of HDF5 for simulations
that do not already use HDF5.
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Malakar et al. [35] present an adaptive framework for loosely-coupled visu-
alization, in which data is sent over a network to a remote visualization cluster
at a frequency that is dynamically adapted depending on resource availability.
Our approach also adapts output frequency to resource usage.

The PreDatA [33] middleware proposes to dedicate a set of nodes as a staging
area to perform a first step of data processing prior to I/O for the purpose of
subsequent visualization. The coupling between the simulation and the staging
area is done through the ADIOS [43] I/O layer. The use of the ADIOS backend
allows to decouple the simulation and the visualization by simply integrating
data analysis as part of an existing I/O stack [62]. While Damaris borrows
the use of an XML file from ADIOS in order to simplify its API, it makes the
orthogonal choice of using dedicated cores rather than dedicated nodes. Thus
it avoids potentially costly data movements across nodes.

GLEAN [34] provides in situ visualization capabilities with dedicated nodes.
The authors use the PHASTA simulation on the Intrepid supercomputer and
ParaView for analysis and visualization on the Eureka machine. Part of the
analysis in GLEAN is done in a time-partitioning manner at the simulation
side, which makes it a hybrid approach involving tightly- and loosely-coupled
in situ analysis. Our approach shares some of the same goals, namely to couple
a simulation with run-time visualization, but we run the visualization tool on
one core of the same node instead of dedicated nodes. GLEAN is also used in
conjunction with ADIOS [63].

EPSN [44] is an environment providing steering and visualization capabili-
ties to existing parallel simulations. Simulations instrumented with EPSN ship
their data to a visualization pipeline running on a remote cluster, thus EPSN
is an hybrid approach including both code changes and the use of additional
remote resources. In contrast to EPSN, all visualization tasks using Damaris
can be performed on dedicated cores, closer to the simulation, thus reducing the
network overhead.

Zheng et al. [64] have provided a model to evaluate the tradeoff between in
situ synchronous visualization and loosely-coupled visualization through staging
areas. This model can be applied to compare in situ using dedicated cores
instead of remote resources, with the difference being that approaches utilizing
dedicated cores do not have network communication overhead.

Tightly-Coupled In Situ Visualization. When it comes to tightly integrate anal-
ysis tasks in simulations codes, the existing solutions often do not meet all of
the requirements presented in Section 2.

SciRun [65] is a complete computational-steering environment that includes
visualization. Its in situ capabilities can be used with any simulation imple-
mented with SciRun solvers and structures. SciRun is an example of the trend
towards integrating visualization, data analysis and computational steering in
the simulation process. Simulations are written specifically for use in SciRun in
order to exchange data with zero data copy, but adapting an existing application
to this framework can be a daunting task.

DIY [66] offers a number of communication primitives allowing to easily build
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efficient parallel in situ analysis and visualization algorithms. However it does
not aim to provide a way to dedicate resources on which to run these algorithms.
DIY could therefor very well be coupled with Damaris to implement powerful in
situ analysis algorithms while Damaris provides the flexibility of running them
on dedicated resources.

Tu et al. [67] propose an end-to-end approach for an earthquake simulation
using the Hercule framework. All the components of the simulation, including
visualization, run in parallel on the same machine, and the only output consists
of a set of JPEG files. The data processing tasks in Hercule are still performed
in a synchronous manner, and any operation initiated by a process to perform
these tasks impacts the performance of the simulation.

In the context of ADIOS, CoDS (Co-located DataSpaces) [68] builds a dis-
tributed object-based data space abstraction and can use dedicated nodes (and
recently dedicated cores with shared memory) with PreDatA, DataStager and
DataSpace. ADIOS+CoDS has also been used for code coupling [69] and demon-
strated with different simulation models. While the use of dedicated cores to
accomplish two different tasks is a common theme in our approach, our objec-
tive in this chapter was to compare the performance impact on the simulation
of a collocated visualization task with a directly embedded visualization. Be-
sides, placement of data in shared memory in the aforementioned works is done
through the ADIOS interface, which creates a copy of data from the simulation
to the shared memory using a file-writing interface. We leverage the double-
buffering technique usually implemented in simulations as an efficient alternative
for sharing data.

Posteriorly to our work, Dreher and Rafin [70] built on the FlowVR frame-
work (initially proposed for real-time interactive parallel visualization in the
context of virtual reality) to provide a solution integrating both time partition-
ing, dedicated cores and dedicated nodes. They address usability by providing
a simple put/get interface and a Python script that describes the various com-
ponent of the visualization pipeline. They went one step further by providing in
situ interactive simulation steering in a cave-like system with haptic devices [71],
highlighting a case where the simulation process and research are part of the
same workflow.

7. Conclusion and Future Directions

As HPC resources exceeding millions of cores become a reality, science and
engineering codes invariably must be modified in order to efficiently exploit
these resources. An important challenge in maintaining high performance is
data management, which nowadays does not only include writing and storing
data efficiently, but also analyzing and visualizing these data in order to retrieve
a scientific insight.

This paper provides a comprehensive overview of Damaris, an approach
which proposes to offload data management tasks, including I/O, post-processing
and visualization, into dedicated cores of multicore nodes. Damaris efficiently
leverages shared-memory to improve memory usage when transferring data from
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cores running the simulation to cores running data-related tasks. Thanks to its
plugin system and an external description of data, Damaris is highly adaptable
to a wide range of simulations.

We first used Damaris to offload I/O tasks in dedicated cores, and com-
pared the resulting performance with the two standard approaches to I/O in
HPC simulations: the File-per-process and the Collective I/O approaches. By
gathering I/O operations in a reduced number of cores and by avoiding synchro-
nization between these cores, Damaris is able to completely hide all I/O-related
costs, and in particular the I/O variability. Our experiments using the CM1
atmospheric simulation and the Nek5000 computation fluid dynamic, in partic-
ular on up to 9216 cores of the Kraken supercomputer, showed that Damaris
can achieve a 15 times higher throughput compared with the collective I/O
approach. Damaris also dramatically reduces the application run time, lead-
ing to a 3.5× speedup in CM1, for example. Observing that dedicated cores
still remain idle a large fraction of the time, we implemented several improve-
ments, including an overhead-free data compression that achieved up to 600%
compression ratio.

We then leveraged the time spared by Damaris on dedicated cores by extend-
ing it to support in situ visualization through a connection with the VisIt visu-
alization software. We evaluated our Damaris-based in situ visualization frame-
work on the Grid’5000 and Blue Waters platforms. We showed that Damaris
can fully hide the performance variability induced by in situ visualization tasks
as well, even in scenarios involving interactions with a user. Besides, Damaris
reduces visualization-related code modifications to a minimum in existing sim-
ulations.

Finally we further extended Damaris to support the use of dedicated nodes
instead of dedicated cores. Based on our framework, we performed a thorough
comparison of the dedicated cores, dedicated nodes and time-partitioning ap-
proaches for I/O on 3 different clusters of the Grid’5000 testbed, with the CM1
and Nek5000 simulations. Our evaluation shows that approaches based on ded-
icated resources always perform better than the time-partitioning approach for
the selected simulations. They both manage to hide the I/O-related costs and,
as a result, improve the overall simulation performance. While the choice of an
approach based on dedicated cores over an approach based on dedicated nodes
is primarily driven by the number of cores per node available in the platform,
this choice also depends on the scalability of the application, its memory usage,
and the potential use of spare time in dedicated resources.

To our knowledge, Damaris is the first middleware available to the commu-
nity6 that offers the use of dedicated cores or dedicated nodes to serve data
management tasks ranging from I/O to in situ visualization. This work paves
the way for a number of new research directions with high potential impact. Our
study of in situ visualization using Damaris and CM1 revealed that in some sim-
ulations such as climate models, an important fraction of the data produced by

6See http://damaris.gforge.inria.fr

44

http://damaris.gforge.inria.fr


the simulation does not actually contain any part of the phenomenon that are
of interest to scientists. When visualizing this data in situ, it thus becomes
possible to lower the resolution of non-interesting parts in order to increase the
performance of the visualization process, an approach that we call “smart in
situ visualization”. Challenges to implement smart in situ visualization include
automatically discriminating relevant and non-relevant data within the simula-
tion while this data is being produced. This detection should be made without
user intervention and be fast enough to not diminish the overall performance
of the visualization process. The plugin system of Damaris together with its
existing connection with the VisIt visualization software provide an excellent
ground to implement and evaluate smart in situ visualization.

We also plan to investigate ways to reduce the energy consumption of sim-
ulations that use approaches like Damaris. We have already shown that the
time spared by dedicated cores in Damaris can be leveraged to compress the
data prior to storing it. An immediate question that can be asked is to which
extent does compression in Damaris impacts this energy/performance tradeoff.
On one hand, compression reduces the amount of data transferred and thus,
the network traffic, which leads to lower energy consumption from data move-
ments. On the other hand, compressing data requires more computation time
and higher energy consumption as a result of data movement in the local mem-
ory hierarchy. Consequently, a promising direction will consist in investigating
the tradeoff between energy, performance and compression level.
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